Copy over css, js and favicon. Add in links to files in header

This commit is contained in:
perryharlock
2013-09-16 15:37:56 +01:00
parent e54a011a9d
commit f2b17154f8
17 changed files with 1235 additions and 8 deletions

View File

@@ -0,0 +1,44 @@
/* Flot plugin for plotting textual data or categories.
Copyright (c) 2007-2013 IOLA and Ole Laursen.
Licensed under the MIT license.
Consider a dataset like [["February", 34], ["March", 20], ...]. This plugin
allows you to plot such a dataset directly.
To enable it, you must specify mode: "categories" on the axis with the textual
labels, e.g.
$.plot("#placeholder", data, { xaxis: { mode: "categories" } });
By default, the labels are ordered as they are met in the data series. If you
need a different ordering, you can specify "categories" on the axis options
and list the categories there:
xaxis: {
mode: "categories",
categories: ["February", "March", "April"]
}
If you need to customize the distances between the categories, you can specify
"categories" as an object mapping labels to values
xaxis: {
mode: "categories",
categories: { "February": 1, "March": 3, "April": 4 }
}
If you don't specify all categories, the remaining categories will be numbered
from the max value plus 1 (with a spacing of 1 between each).
Internally, the plugin works by transforming the input data through an auto-
generated mapping where the first category becomes 0, the second 1, etc.
Hence, a point like ["February", 34] becomes [0, 34] internally in Flot (this
is visible in hover and click events that return numbers rather than the
category labels). The plugin also overrides the tick generator to spit out the
categories as ticks instead of the values.
If you need to map a value back to its label, the mapping is always accessible
as "categories" on the axis object, e.g. plot.getAxes().xaxis.categories.
*/(function(e){function n(e,t,n,r){var i=t.xaxis.options.mode=="categories",s=t.yaxis.options.mode=="categories";if(!i&&!s)return;var o=r.format;if(!o){var u=t;o=[],o.push({x:!0,number:!0,required:!0}),o.push({y:!0,number:!0,required:!0});if(u.bars.show||u.lines.show&&u.lines.fill){var a=!!(u.bars.show&&u.bars.zero||u.lines.show&&u.lines.zero);o.push({y:!0,number:!0,required:!1,defaultValue:0,autoscale:a}),u.bars.horizontal&&(delete o[o.length-1].y,o[o.length-1].x=!0)}r.format=o}for(var f=0;f<o.length;++f)o[f].x&&i&&(o[f].number=!1),o[f].y&&s&&(o[f].number=!1)}function r(e){var t=-1;for(var n in e)e[n]>t&&(t=e[n]);return t+1}function i(e){var t=[];for(var n in e.categories){var r=e.categories[n];r>=e.min&&r<=e.max&&t.push([r,n])}return t.sort(function(e,t){return e[0]-t[0]}),t}function s(t,n,r){if(t[n].options.mode!="categories")return;if(!t[n].categories){var s={},u=t[n].options.categories||{};if(e.isArray(u))for(var a=0;a<u.length;++a)s[u[a]]=a;else for(var f in u)s[f]=u[f];t[n].categories=s}t[n].options.ticks||(t[n].options.ticks=i),o(r,n,t[n].categories)}function o(e,t,n){var i=e.points,s=e.pointsize,o=e.format,u=t.charAt(0),a=r(n);for(var f=0;f<i.length;f+=s){if(i[f]==null)continue;for(var l=0;l<s;++l){var c=i[f+l];if(c==null||!o[l][u])continue;c in n||(n[c]=a,++a),i[f+l]=n[c]}}}function u(e,t,n){s(t,"xaxis",n),s(t,"yaxis",n)}function a(e){e.hooks.processRawData.push(n),e.hooks.processDatapoints.push(u)}var t={xaxis:{categories:null},yaxis:{categories:null}};e.plot.plugins.push({init:a,options:t,name:"categories",version:"1.0"})})(jQuery);